Quantum Phase Transitions and non-Fermi-liquid Physics Qimiao Si, Rice University, DMR-0090071

- •Matters have different phases, such as water, vapor, and ice; phase transitions occur when temperature is changed
- •The Nobel-Prize-winning theory of critical points of thermal phase transitions, developed by Kenneth Wilson in the 1970s, is firmly based on the notion that critical excitations are infinitely extended in space
- •Quantum phase transitions are entirely driven by quantum fluctuations, which in turn are dictated by Heisenberg's famous uncertainty principle
- •For the past quarter of a century, it has been held that quantum excitations at a quantum critical point are infinitely extended both in space and time (Figure 2, Type II)

- •We studied a model for heavy fermion metals (Figure 1)
- •We identified a locally quantum critical point with excitations that are *local in space*, though still infinitely extended in time (illustrated by the vanishing of a local energy scale at the quantum critical point in Figure 2, Type I)
- •The theory provides a natural explanation to some highly puzzling experiments in heavy fermions

Illustration of a model for heavy fermions, with spins and electrons

Quantum Phase Transitions and non-Fermi-liquid Physics (Cont.) Qimiao Si, Rice University, DMR-0090071

The discovery of the locally quantum critical point has broad significance:

- •It uncovers a fundamentally new type of quantum phase transition
- •It represents a prototype for how strong quantum fluctuations and interactions lead to new quantum states of matter
- •It provides new insights into the elusive physics of high temperature superconductors, the so-called non-Fermi liquid behavior

Junior researchers who participated in this work:

J. Lleweilun Smith (graduate student) Silvio Rabello (post-doc fellow)

Reference: Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001)

Two Types of Quantum Critical Point (QCP)

